BISNORCARADIENE^{*} - SYNTHESIS AND REACTIONS -THE FIRST STABLE BISNORCARADIENE^{**} Karl-Heinz Pauly and Heinz Dürr^{*} Fachbereich 14 - Organische Chemie der Universität des Saarlandes - D 6600 Saarbrücken (Received in UK 11 August 1976; accepted for publication 19 August 1976)

Bisnorcaradienes^{*}are very interesting molecules as far as bonding and structure-reactivity relationship are concerned. In principle two cyclohexadiene rings can be bonded to a cyclopropane ring in two different modes leading to the bisnorcaradienes <u>1</u> or <u>2</u>. (The circumstatial systematic name for <u>1</u> is from now on substituted by the term "bisnorcaradiene").

The third alternative of a trans fused cyclohexadiene ring would be the extremely strained molecule 2'. Whereas 2 can be synthesized by the classical procedure of Vogel ¹, <u>1</u> has been postulated as intermediate in the photolysis of spironorcaradienes <u>3</u>²⁾ as well as in thermal reactions ^{3,4)}. However only recently we were able to prove really the existence of the 2.5diphenyl substituted <u>1a</u> in solution by nmr spectroscopy at low temperature⁵. In this communication we report on: a) the synthesis of substituted bisnorcaradienes in solution as well as the isolation of the first stable derivative of <u>1</u>, dibenzo-bisnorcaradiene (<u>1e</u>); b) the thermal stability of derivatives of <u>1</u> and their photochemical reactions are also discussed.

Photolysis of spiro-norcaradienes <u>3</u> (in equilibrium with their valence isomers <u>4</u>) with uv light of wavelength $\lambda > 300$ nm led to the benzocycloheptatrienes <u>5</u> - <u>7</u>^{2,6}). Monochromatic light ($\lambda = 300$ nm from a monochromator or Hg high pressure lamp/K₂CrO₄-filter; -50^oC in the case of <u>3a,b</u>; 25^oC for

Table 1					chem.		
<u>1</u>	R ₁	^R 2	R ₃	R4	Ha	Hb[& ,ppm]	Yield [%]
a ⁵⁾	Ρh	Н	н	Ph	2,90	4,67	> 90
b	C1	C1	C1	C1	2,87	4,89	> 90
c ^{*)}	8enzo		Ph	Ρh	3,43	4,21	> 90
c'	Ph Ph Be		8en	en zo 2,92		5,21	> 90
d	Benzo		н	Н	3,22-3,51	4,93	> 60
e	Benzo		Benzo		2,98	5,15	15-20

*) ratio 1c/1c'= 3:1

<u>3c-e</u>, 0.2% etheral solution) on the other hand afforded among little side products mainly bisnorcaradienes <u>1a-e</u>.

The structure of <u>1</u> was established mainly by ¹H-nmr spectroscopy (selected data see table 1). <u>1e</u> is the first stable <u>bisnorcaradiene</u> having the following analytical and spectroscopic data: mp 104° ; uv, λ_{max} 357($\mathcal{E} \approx 8000$); ¹H-nmr (CDCl₃, **d** in ppm): 7.2-8.2(m, 8 arom. H); 6.8-7.0 (m, 3 olefinic H); 6.3 (m, 1H, at C-8); 5.15 (dd, J=5.8/9.0 cps, 1H at C-7); 2.98 (d, J=5.8 cps 1H at C-6); ir(KBr): 3200, 3000, 1580, 1500, 760, 725 cm⁻¹; mass spectrum m/e 242 (M⁺, 100%).

From the two possible pathways leading to <u>1a-e</u>: a) a di- π -methane rearrangement and b) a [1.7]-sigmatropic shift to <u>9</u> followed by ring closure to <u>1</u>²) we favor alternative a). The insensitivity of the nmr-spectra of <u>1</u> to temperature changes ⁵) between -90 and -20°C argues strongly for the formation of only <u>1</u> or <u>1</u>' and against an equilibrium of the valence isomers <u>1</u> or <u>1</u>' and <u>8</u> or <u>9</u>. Formation of <u>1c</u> and <u>1c'</u> in the ratio of <u>3</u>:1 demonstrates also that this di- π -methane rearrangement is regiospecific. A theoretically possible antara-antara[5.5]-sigmatropic rearrangement could not be observed.

Thermolyses of the bisnorcaradienes 1a-e gave, via a disrotatory ring opening followed by a [1.5]-sigmatropic shift, the benzocycloheptatrienes <u>5-6</u>. A kinetic study of this reaction by means of UV-spectroscopy (in iso-octane) affords the activation parameters collected in table 2.

1	ratio <u>5</u> / <u>6</u>	∆Ea ^{# a)}	∆H ^{# a)}	ΔG^{Ha}	∆s ^{#b)}	^t 1/2 ^{25°C[min]}
a	25/75	15.8	15.2	21.5	-21	16
Ъ	75/27	16.1	15.5	21.3	-19	7,9
C	7	15.9	15.3	24.4	-30	15.4 · 10 ²
d	- only 6	20.2	19.6	24.6	-16.6	20.5 · 10 ²
e	-	-	-	-	-	stable

<u>Table 2:</u> Activation parameters of the thermolyses of <u>1</u>

a) kcal/mole b) e.u.

Whereas in <u>1c</u>, <u>1d</u> and <u>1e</u> annelation with one or two aromatic rings stabilizes the bisnorcaradiene-system considerably, chlorine substitution destabilizes <u>1</u> obviously. It is not completely clear, if the -I or the +M-effect (-I > +M)

is responsible for this fact.

The photochemical behaviour of the bisnorcaradienes <u>1</u> was studied. Irradiation of <u>3</u> \rightleftharpoons <u>4</u> at room temperature (λ =300 nm, CDCl₃ or ether) gave directly <u>5</u> and <u>6</u> (via <u>1</u> as intermediate). However irradiating <u>1</u> at -50^o (where <u>1</u> is a stable compound) with 380 nm light (or K₂CrO₄ or Pyrex-filter additionally in the case of <u>1b</u>) provided mainly 5H-benzocycloheptatrienes <u>7</u> as photoproducts and very small amounts of the benzonorcaradiene, which is due to irradiation of <u>7</u>.

Since a photochemical ring opening of the norcaradiene bond should be conrotatory leading to a strained trans-cycloheptatriene system <u>10</u>, a direct [1.7]sigmatropic K-shift of <u>1</u> to <u>7</u> seems to be a more likely pathway for the formation of <u>7</u>.

The isolation of a stable bisnorcaradiane of type <u>1</u> renders this system more liable to reactivity studies. Such studies, e.g. addition of electrophiles, dianophiles etc., photochemical mechanistic studies as well as an X-ray analysis are currently under way.

<u>Acknowledgment:</u> We acknowledge gratefully financial support from the Deutsche Forschungsgemeinschaft as well as the Fonds der Chemischen Industrie.

Literature:

- *) The systematic name is Tricyclo[5.4.0.0 ^{1,6}]undeca-2,4,8,10-tetraene
- **) Photochemistry of small rings 34.
- 1) E. Vogel, Pure and Appl. Chem., 20, 237 (1969).
- 2) H. Dürr, H. Kober, I. Halberstadt, U. Neu, T.T. Coburn, T. Mitsuhashi and
 W.M. Jones, J. Amer. Chem. Soc. <u>95</u>, 3818 (1973).
- 3) T. Mitshuhashi and W.M. Jones, J.C.S. Chem. Commun. <u>1974</u>, 103.
- 4) E. Vedjs and N.R. Wilter, Tetrahedron Lett. <u>1975</u>, 2697.
 C.W. Gruber and M. Pomerantz, Tetrahedron Lett. 1970, 3755.
- 5) H. Dürr, M. Kausch and H. Kober, Angew. Chem. 86, 739 (1974).
- 6) H. Dürr and G. Scheppers, J. Liebigs Ann. Chem. <u>734</u>, 141 (1970).
 H. Dürr and H. Kober, Tetrahedron Lett. <u>1975</u>, 1255; Chem. Ber. <u>106</u>, 1565 (1973).